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We report an investigation of the nuclear spiattice relaxation Table 1. Ty of Hz and H,@Cqgo at 300 K in Various Solvents, at a

1 ; Field of 11.7 T (500 MHz); Ratio T1(Hz2)/ T1(H.@Ceo) and Viscosity
of H, and H@Gso! as a function of solvent and temperature. These of the Solvents, at 25 °C

studies explore and compare the nature of the interactions of a guest

H, molecule confined transiently within the walls of a solvent cavity _ o ner
and a guest kimolecule encapsulated within the walls of thg C solvent H H@Ceo T ratio 1 (cP)
cavity. CCly 0.84 0.046 18 0.8
The relaxation timeTy) of H, has been extensively studied in ~ chloroforme; 121 0.082 15 0.539
the gas phase and in liquid hydrogen at low temperafites. — L-2-dichlorobenzend, 127 0101 13 1.322
. ) tolueneds 1.28 0.104 12 0.548
However, there are _few reports of the magnetic resonance of H 1,1.2,2-tetrachloroethard-  1.37 0.108 13 1.629
solutiorf-> and none in ordinary organic solvents. To generate data benzeneds 1.42 0.118 12 0.636
for comparison with H@Csy Wwe measured th&; values of H in benzene 1.44 0.118 12 0.599

a range of organic solvents. a
. . + 5%. b Reference 228 of protonated solvents, ref 22 Reference
The chemical shifts of Hand H@GCs, appear at-4.5 ppm and 18.¢ Refeorence 23, 7orp

~ —1.3 ppm, respectively. The value of of H, at 300 K varies

significantly with solvent (Table 1): from 1.44 s (benzene) to 0.84 in solution also depends on the competition between intramolecular
s (CCl). A somewhat larger variation df, with the same set of  dipole—dipole interaction and spin-rotation interaction.

solvents was found for @ Cso (Table 1): from 0.118 s (benzene) The contribution to I¥; (in extreme narrowing conditions) from

to 0.046 s (CC)).6 The values ofT; are 16-20 times smaller for intramolecular dipolar and spin-rotation interaction may be esti-
H,@Gso than for H, even though the ratios @ for H, and H@Cso mated by eq 4dand eq Z112respectively:

are similar in all the solvents.

The temperature dependencesTeffor H, and H@GCso were 1 3 V‘:‘hz
investigated in detail for toluengs (Figure 1) and for benzend; T T o5 Up Q)
1,1,2,2-tetrachloroetharh; 1,2-dichlorobenzend;, and chloroform- 1dip 2r
d;. Striking features of the data are the occurrence of a maximum
for T, at ~240 K for both the Hand H@GCsg in tolueneds and a i — 4IkBTCZ - )
ratio of T, values which is nearly independent of temperature. A Tier 3Rz ¥
maximum of the value off; with temperature is also found in
1,1,2,2-tetrachloroethards-and chloroforme,. For benzenels and where yy is the magnetogyric ratio for the protom, is the
1,2-dichlorobenzend, in the available range of temperatures, only equilibrium internuclear distance of,H0.74 A), C is the spin-
a decrease of; with increasing temperature was observed. rotation coupling constant (7.16 10° rad s%),1°1 is the moment

This kind of dependence of; on temperature is uncommon, of inertia of H, (4.6 x 10748 kg n¥), andkg is the Boltzmann
although a maximum of; has previously been observed for small constant. The correlation timeg, andzs, are measures of the time-
molecules such as #,” HCI, and HBr in solutior?® and it is dependent fluctuations in the orientation and angular velocity of
consistent with two relaxation mechanisms with different temper- Hz, respectively. Both correlation times are expected to be functions
ature dependences dominating in turn below and above 240 K for of viscosity and temperature which depend on the details of the
both H, and H@Cs,. Since the value of; for both H, and H@Cso motion of H, molecules and the surrounding medidin.
does not significantly change in going from benzégés benzene- Qualitatively, the dipole-dipole interaction (eq 1) might account
ds (Table 1), the dominating interactions determining &hd for the observed increase @f with temperature because faster
H,@Cso Nuclear relaxation must bietramolecular. Furthermore, ~ Molecular reorientations correspond to shorigs. On the other
the intramolecular dipotedipole interaction and spin-rotation hand, the spin-rotation interaction might account for the observed
interaction are knowhto be responsible for the relaxation of decrease of; with temperature both through the explicit temper-
gaseous K and their magnitude has been measured ferird ature dependence (eq 2) and througliemperature dependente.

molecular beam¥ Therefore it is likely that the relaxation of,H Assuming that the relaxation at the lowest temperature is dominated
by the dipolar interaction, from the value ®f at 200 K and eq 1

it is possible to estimate the correlation timg, of the process

T Columbia University.

ﬁState University of New York at Binghamton. that modulates this interactiongi(H2) = 0.20 ps and ip(H2@ Cso)

Brown University. — . . .
SM. V. Lomonosov Moscow State University. 2.1 ps. In a elmllar way, assuming th_at at the hlghest temperature
UKyoto University. the relaxation is dominated by the spin-rotation interaction, from
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Figure 1. T (s) of H, (blue dots) saturated at room temperature in

deoxygenated toluengy-and H@ Ceo (red dots) dissolved in toluerd; at
temperatures ranging from 200 to 330 K, at a field of 11.7 T.

the values ofT; at 330 K and eq 2, the correlation tinag of the
process which modulates this interaction is obtainedH,) = 0.72
ps andzs(H.@Cs0) = 8.2 ps4

It is instructive to compare these values to the characteristic free
rotation times'® rrr = (271/9)(I/kg T)*2, of 0.02 and 3 ps calculated
for H, and Go, respectively, at 330 K, and the values for the
reorientation time measured forsdn toluene at room tempera-
ture: 74ip(Cep) = 7—10 ps and extrapolated at 200 K:30 ps6:7
An estimate ofrqj, can be made for fin toluenedg at 200 K using
the Stokes Einstein-Debye relationshipt( = 47r3;/3ksT), the
viscosity at 200 K (4.5 cP¥ and the van der Waals radius (1.38
Alg): Tsep ~ 18 ps.

Comparisons of the various estimates of correlation times for
H, and H@GCso in tolueneds lead to the following qualitative
conclusions.

Modulation of the angular velocity of Hn both environments
occurs somewhat more slowly than the frequency of reorientation
(Tsr > Taip), Since at 330 Krgip, may be safely assumed even shorter
than those calculated at 200 K and in the caseygfH,) close to
7rr Of Ha. This implies that the Hrotates through large angles
between collisions with the solvent or walls of the,Cavity2°

The value ofrgi, for H, in solution is much smaller than expected
from simple StokesEinstein-Debye behaviorip(H2) < 7sep).

This is consistent with the reduced influence of viscous forces on
reorientation expected for a nearly spherical molecule rotating under
“slip” conditions?!

Taip(H2@GCso) is larger thantzgip(Ho). This suggests sufficient
interaction between fand the walls of the g cavity to entice the
smaller molecule to follow the rotation of the larger, althoug
(Ceo) is still one order of magnitude larger thag,(H.@ Cso). The
absence of correlation between solvent viscosity and the value of
T, in the different solvents (Table 1) is expected farifisolvents
under slip conditions and does not conflict with the latter hypothesis
on H@GCgso becauseryip(Cso) is much smaller than itssep, being
close to itstrg at room temperatut&and showing no dependence
on viscosity when measured in different solveMts.

The value ofT; of H, and H@GCso varies with solvent (Table
1), although a correlation between the valuesTpaind viscosity
or dielectric constant of the solvent could not be fodh@hese

observations and the above considerations on the correlation times

support an approximate model in which it is the motions of the H
and H@GC in the solvent cages that are significant, along with
the collisions or interactions of Hvith the concave walls of £g.

The similarity of the ratio of the values @1 for all of the solvents
investigated suggests that the motions efadd H@GCso generate
fluctuating fields with corresponding correlation times. Further
theoretical studies are required to determine the validity of these
speculations.
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